
VideoPipe: Building Video Stream Processing Pipelines
at the Edge

Mohammad Salehe∗
University of Toronto

Toronto, Canada
salehe@cs.toronto.edu

Zhiming Hu
Samsung AI Center
Toronto, Canada

zhiming.hu@samsung.com

Seyed Hossein Mortazavi∗
University of Toronto

Toronto, Canada
mortazavi@cs.toronto.edu

Tim Capes
Samsung AI Center
Toronto, Canada

t.capes@samsung.com

Iqbal Mohomed
Samsung AI Center
Toronto, Canada

i.mohomed@samsung.com

Abstract
Real-time video processing in the home, with the benefits of low
latency and strong privacy guarantees, enables virtual reality (VR)
applications, augmented reality (AR) applications and other next-
gen interactive applications. However, processing video feeds with
computationally expensive machine learning algorithms may be
impractical on a single device due to resource limitations. For-
tunately, there are ubiquitous underutilized heterogeneous edge
devices in the home. In this paper, we propose VideoPipe, a system
that bridges the gap and runs flexible video processing pipelines on
multiple devices. Towards this end, with inspirations from Function-
as-a-Service (FaaS) architecture, we have unified the runtime envi-
ronments of the edge devices. We do this by introducing modules,
which are the basic units of a video processing pipeline and can
be executed on any device. With the uniform design of input and
output interfaces, we can easily connect any of the edge devices to
form a video processing pipeline. Moreover, as some devices sup-
port containers, we further design and implement stateless services
for more computationally expensive tasks such as object detection,
pose detection and image classification. As they are stateless, they
can be shared across pipelines and can be scaled easily if neces-
sary. To evaluate the performance of our system, we design and
implement a fitness application on three devices connected through
Wi-Fi. We also implement a gesture-based Internet of Things (IoT)
control application. Experimental results show the the promises of
VideoPipe for efficient video analytics on the edge.

CCS Concepts • Computing methodologies → Computer vi-
sion tasks; • Computer systems organization → Cloud comput-
ing;

Keywords edge computing, video streaming, pipelining
ACM Reference Format:
Mohammad Salehe, Zhiming Hu, Seyed Hossein Mortazavi, Tim Capes,
and Iqbal Mohomed. 2019. VideoPipe: Building Video Stream Processing

∗Work done during internship at Samsung AI Center, Toronto.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
Middleware Industry ’19, December 9–13, 2019, Davis, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7041-7/19/12. . . $15.00
https://doi.org/10.1145/3366626.3368131

Pipelines at the Edge. In 20th International Middleware Conference Industrial
Track (Middleware Industry ’19), December 9–13, 2019, Davis, CA, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3366626.3368131

1 Introduction
Many user-oriented computer vision and AI applications require
real-time live video processing with immediate data processing in
order to deliver a better user experience. The home environment
is where many of these applications are used. Examples include
virtual reality (VR) and augmented reality (AR) [18, 29], activity
detection for smart home [21, 31] and health applications [20, 30].
Such applications have also emerged in retail environments such
as “cashierless” stores where users can checkout items by simply
walking out with them and have a computer vision system detect
and process the purchase [1], and AR smart mirrors that let users
try on clothes, accessories or make-up.

While recent advancements in machine learning and computer
vision have enabled these applications through the developments
of deep neural networks, the computational requirements even for
inference can be substantial. These models cannot run on smaller
devices with limited battery and processing power. Significant
research efforts have attempted to shrink models to mobile and
embedded devices using techniques such as quantization, model
compression, etc. But these approaches reduce accuracy and limit
possible applications. Other approaches attempt to run the heaviest
parts of the processing pipeline in the cloud [11, 32, 33] as resources
may be provisioned in an on-demand fashion. However, real-time
video processing in the cloud may be impractical because of latency
requirements for interactive applications, bandwidth limitations
and privacy restrictions. Recently, edge computing has emerged
as a viable solution to the first and partially the second challenge,
but doesn’t concern privacy issues as data is still transmitted to
other entities. Considering these challenges, the question is how to
architect a system that utilizes available resources inside a house
(or even on the edge) where heterogeneous devices exist.

Previous work has attempted to apply principles from service-
oriented architectures, where computationally expensive AI compu-
tation is embodied in services (perhaps hosted on a powerful edge
server), and the application resides on some other host, making calls
to the services. Our experience has shown that this approach incurs
significant overhead in terms of delays in data transfer between
the caller and the service. There have even been notable efforts
to build applications at the edge by deploying devices capable of
running Function-as-a-Service platforms [3] and containers [4].

https://doi.org/10.1145/3366626.3368131
https://doi.org/10.1145/3366626.3368131

Middleware Industry ’19, December 9–13, 2019, Davis, CA, USA M. Salehe et al.

But in a home environment, a user may have smartphones and
tablets running Android, TVs, watches and Smart Fridges that run
a Linux based OS such as Tizen [9], and general purpose devices
such as laptops and desktop computers. Some of these devices are
constrained in that they cannot run container-based applications
but can support a high-level language such as JavaScript that is
particularly well-suited to being sandboxed within a virtual execu-
tion environment. Others devices in the home, such as laptops and
desktop computers, are less constrained and can run container1
based applications.

In this paper, we propose VideoPipe, a video processing frame-
work for the home that sets up video processing pipelines onmulti-
ple heterogeneous devices. More specifically, inspired by service-
oriented programming, the microservices architecture and the
Function-as-a-Service architecture, VideoPipe runs user applica-
tions that are splitted into modules by connecting different devices
to form a video processing pipeline where each device may only
execute a part of the pipeline. VideoPipe is particularly useful when
there is heterogeneity among devices and containers cannot be run
on all devices; devices without containers can still contribute to
the pipeline, by exposing native services and local I/O capabilities
to modules, and the runtime automatically manages chaining the
various modules together - on and off device. Running on heteroge-
neous devices allows applications to run in the home, on the edge
or in a hybrid model.

To this end, we design and implement the same runtime environ-
ments and input/output interfaces in VideoPipe for heterogeneous
devices in the home. With this feature, any processing units (mod-
ules in this paper) in the video processing pipeline can be executed
on any device if it has enough resources and any of the two devices
can be easily connected. This providesmuchmore flexibility to build
the video processing pipeline across multiple devices. In addition to
modules, we also incorporate stateless services for computationally
expensive tasks such as object detection, pose detection and image
classification. As they are stateless, the services provide auto-scaling
and reusability capabilities across different pipelines. In short, in
VideoPipe, the video frames will flow through the modules on the
devices that are involved in the video processing pipeline and mod-
ules may call the stateless services for heavy-weight processing.

Wemake three key contributions in this paper. (i)We describe the
design and implementation of VideoPipe, a FaaS-Container Hybrid
runtime platform that co-locates modules with the services they
call in order to reduce round-trip delays. VideoPipe leverages the
capabilities of both constrained and resourceful devices. Through
our evaluations, we show the clear benefits of co-locating modules
with the services they call. (ii) We have provided a uniform runtime
with I/O interfaces on multiple devices to enable the chaining of
processes on edge devices that create the pipeline. (iii) We describe
various proof-of-concept applications that we implemented on the
VideoPipe platform and we evaluated the performance of VideoPipe
on real edge devices.

2 System Design
Inspired by functional programming [12, 17] and the microser-
vices architecture [22, 28], VideoPipe can support video processing
pipelines composed of smaller vision modules.

1e.g. Docker

In our design, each application is specified as a Directed Acyclic
Graph (DAG) by the application developer. Each node in this graph
is a module that defines the data flow logic. The edges are the
data flow pipeline between the nodes that the system sets up. The
modules can call corresponding machine learning services such as
object detection, pose detection and image classification. All the
communications among modules and services are supported by
ZeroMQ for efficient data communications.

An example pipeline is shown in Fig. 1. In this figure, we can
see that our video processing pipeline is distributed over three
edge devices and the modules are connected with remote calls. The
internal details of communications are masked from the pipeline
developer. Each module can call the services available on the same
device for computationally expensive machine learning services.

f1 f2 f5

Functions Modules Containers
(Services)

s1

Module Call

Service Call

f4

Device 1 Device 2 Device 3

s2 s4

f3
Frames

s3

Figure 1. An example of video processing pipeline.

2.1 Modules
In our system, we use modules, which are self-contained units with
encapsulated states, to control the flow of video frames inside the
video processing pipeline. One of the core principles behind our
design is simplicity. Each module implements an interface that is
triggered by data arrival events. Depending on the device that they
are being executed on, modules can use stateless services to do the
heavy lifting on video processing and then forward the results
to other modules. The APIs provided by these stateless services,
greatly simplify the development of modules, which only care about
the high-level logic workflow of each application.

To ease the deployment of the modules, we also provide the
same runtime environments even though the edge devices are
heterogeneous in both hardware specifications and software stacks.
With the same runtime environment, we can deploy the modules on
any devices, which provides much more flexibility to the pipelines.

2.2 Services
Themain video analytics are performed by stateless services accessi-
ble to modules. These services perform framewise video processing.
Examples of these services include object detection, face detection,
activity recognition, and object tracking. These services all receive
needed data as input so they do not require saving state. This al-
lows the services to be shared among different applications and
also allows for horizontal scaling of these services, which results
in faster processing of live streams and higher frame rates.

Modules can be deployed at almost all the edge devices as they
only contain lightweight application code. However, we can only

VideoPipe Middleware Industry ’19, December 9–13, 2019, Davis, CA, USA

Table 1. JavaScript interface to module code

Function Description

init() Callback for module
initialization

event_received(message) Callback for event arrival
call_service(service, message) Requests container-based

services
call_module(module, message) Calls the next module

deploy the services on the devices that support containers as ser-
vices will be running inside containers. Therefore, services are
preinstalled on some edge devices and modules will be spawned
on edge devices after we set up the pipeline.

2.3 Data Flow
Our goal is to support high frame rates and to avoid delays per-
ceivable by the user. In the simple pipeline as shown in Fig. 1, the
video source may push images at a high frame rate into the pipeline.
Queuing the images anywhere inside the pipeline will introduce
delays which are undesired in real-time applications and dropping
frames inside the pipeline wastes computation resources if there is
a bottleneck. We do not use any queues in our design. When the
final module is done with its current data, it signals the source to
send a new frame into the pipeline. This approach pushes frame
dropping to the beginning of the pipeline and eliminates queuing
delays inside the pipeline. A more intelligent signaling mechanism
may also be utilized (e.g., by identifying the bottlenecks) to improve
efficiency further.

3 Implementation
In VideoPipe, we implement an execution framework that sup-
ports running lightweight modules on different heterogeneous
devices such as smart phones, TVs, etc. We show the architec-
ture for VideoPipe in Fig. 2. As shown in the figure, we use Duk-
tape [6], a lightweight embeddable JavaScript engine that executes
JavaScript code on different underlying environments. Similar to
other Function-as-a-Service platforms, modules in VideoPipe are
triggered on events. These events are either data arrival events or
calls from other modules. For each module of an application, a sep-
arate Duktape context is created to execute the module code that
is written in JavaScript. Separate Duktape contexts are spawned
inside a single Jave Virtual Machine (JVM) environment to provide
isolation without compromising performance.

The API specifications for the interface to each module is shown
in Table 1. The init function is called upon deployment on the
device and event_received is called each time there is new message
for the module. call_service is used by the module code to call on
services on the data and call_module is to call other modules. To
minimize data copying between different components, rather than
copying the full image frames to the module, we pass on a reference
id that identifies the frame. The module code can use that id to do
the modifications on the image using the services and forward the
frames to other modules.

// An Example of DAG Configuration for a Pipeline
modules : [

event_received()

service

Module A

f1 event_received()

Module B

f1 f2
call_module()

call_module()

event_received()f2 f1

call_module()

call_service()

call_module()

Module C

Figure 2. Implementation details of JavaScript modules. Each mod-
ule is implemented in JavaScript and can have multiple functions
and its own state. Each module is running on a separate JavaScript
context.

{ name: pose_detector_module
include ("./PoseDetectorModule.js")
service: ['pose_detector']
endpoint: ["bind#tcp://*:5861"]
next_module: activity_detector_module }

{ name: activity_detector_module
include ("./ActivityDetectorModule.js")
service: ['activity_detector']
endpoint: ["bind#tcp://*:5862"]
next_module: [rep_counter_module,

display_module] }
{ name: rep_counter_module

include ("./RepCounterModule.js")
service: ['rep_counter']
endpoint: ["bind#tcp://*:5863"]
next_module: display_module }

...
]

Listing 1. Sample pipeline configuration file. Some details elided to
simplify presentation. Each service is embodied within a container
spec. These can be references to running containers or Dockerfiles
in our implementation.

3.1 Pipeline Configuration
The list of services that the application can use is predefined and
the application developer specifies the list of services it needs to
use for each module through a configuration file. The user also
determines how modules call each other. These settings are neces-
sary for application deployment so the system can setup the data
pipeline. VideoPipe prepares the required service stubs on each
device and connects different components together.

An example of the pipeline configuration file containing three
modules is included in Listing 1. The code file of the module along
with the services it uses are specified in the two lines after the name
of the module. The endpoint field indicates how this module can
be reached. The next_module field determines the outgoing edges
to other modules. VideoPipe’s simple interface enables application
developers to specify the application logic only by implementing
functions in the modules code and describing connections between
modules to create the video processing pipeline.

Middleware Industry ’19, December 9–13, 2019, Davis, CA, USA M. Salehe et al.

3.2 Message Transfer Protocol
Our pipelining system sets up the data path between modules upon
deployment using the information about the DAG of the applica-
tion provided by the developer. This pipeline is established using
ZeroMQ [5] which is a high-performance asynchronous messag-
ing library. This minimizes the delay between different application
modules and improves flexibility of the deployment. Images that
are passed between devices are encoded/decoded and transferred
using ZeroMQ. When a module calls call_module, our system auto-
matically forwards the data on the appropriate ZeroMQ socket for
data transfer, and on the receiving end, data is passed by ZeroMQ to
the corresponding module. While publish subscribe systems such
as Kafka [24] or queue based system RabbitMQ have brokers in
their systems, these brokers will incur extra data communication
overheads because the data was first sent to the broker and then
forwarded to the final destination.

4 Applications
In this section, we will describe two applications that we have built
on top of VideoPipe and some other potential applications that we
can support.

Figure 3. Output of the fitness application that is displayed on a
4K Television.

4.1 Fitness Application
The first application is a workout guidance system that tracks the
progress of users’ fitness routine as they perform various exer-
cises in their living room. In this application, the user places their
smartphone on a phone cradle mounted on the TV. The application
involves running numerous computationally expensive algorithms
on the camera feed and renders the output on the living room
TV display. We show frames with rich information including the
user skeleton and the number of exercise reps for each exercise. A
screenshot of our fitness application is shown in Fig. 3.

For this system we have designed and applied pose detection,
activity recognition and a rep counter. The overview of our system
is shown in Fig. 4. As computational resources on the phone are
not adequate for pose detection, we move this computation to a
desktop. The devices in Fig. 4 are connected by our system to form
a video processing pipeline.

As in Fig. 4, the top row shows the modules and the bottom
row lists the services where blue boxes contain native services and
green boxes represent remote services inside containers. We utilize
ZeroMQ to interact with the remote services inside the containers.
In the following sections, we will go through more details about
the services.

Video
Streaming

Video
Source

Pose
Detection

Activity
Recognition Rep Counter Display

Pose
Detector

Activity
Classifier

Rep
Counter

Display
Service

Phone Desktop TV

Figure 4. The overview of our application.

4.1.1 Pose Detection
The 2D pose detector first detects a human and places a bounding
box around them.Within that bounding box, it detects 17 keypoints.

4.1.2 Activity Recognition
Our activity recognition system utilizes nearest neighbor on pose
sequences. To feed nearest neighbors, we take a list of 15 consecu-
tive frames that are provided by the calling module. We normalize
the coordinates framewise so that (0,0) is located at the average of
the left and right hips of the human in that frame. The algorithm
is trained on all available labelled data except for a withheld test
set. The test accuracy on a withheld test set was above 90%. This
is higher than generally reported in the literature because our sys-
tem has a standardized viewing distance and standardized viewing
angle in our application.

4.1.3 Rep Counter
Our rep counting system relies on the fact that all exercises start
and return to an initial position to start and end a rep. As such,
we feed frame by frame from the same 2D pose detector as in the
activity recognition system. We use k-means with k = 2 to classify
the frames into a cluster that occurs near the start of the exercise
and a cluster that occurs near the end of an exercise. To avoid issues
with boundary cases, we require 4 frames to have transitioned to
count a state transition, which avoids counting alternating 0’s and
1’s that sometimes occur near the cluster boundary. We count a
state transition from and back to the initial state as a single rep. On
our withheld test set, 83.3% accuracy is achieved.

4.2 Gesture Control for IoT Applications
The second application pipeline that we built on top of VideoPipe
is a video based gesture control system for IoT applications. With
the same pose detector service, we use a similar activity classifier
to support activities, such as ‘waving’ and ‘clapping’. The activity
classifier can be trained with custom actions that trigger custom
behaviours. Two examples are using ‘clapping’ to toggle the light
in the living room and using ‘waving’ to toggle a doorbell camera.
In this application, we have the video streaming module, pose
detection module and activity recognition module and use the pose
detector and activity classifier services.

VideoPipe Middleware Industry ’19, December 9–13, 2019, Davis, CA, USA

4.3 Other Applications
In addition to the above two applications, we also implement a fall
detection application pipeline with VideoPipe. Real-time video ana-
lytics consisting of hand detection/tracking, face detection/tracking
and pose detection/tracking, can create ample opportunities for
new user interfaces with IoT devices and new multiple device ex-
periences in the home environment.

5 Evaluation
In this section, we demonstrate the benefits of VideoPipe’s design.
In particular, we compare VideoPipe’s performance with a baseline
approach where frames are sent to a server for processing. We also
highlight the advantage of re-using services for multiple pipelines.

5.1 Experimental Setup
We evaluate two pipelines. One is the fitness application pipeline as
shown in Fig. 4 and the other is for the gesture control introduced
in Sec. 4.2. The phone is one of the flagship Android phones in 2018
with 6GB of main memory and 128 GB of storage. Devices on the
system are connected to each other over a Wi-Fi network.

Metrics We evaluate our system based on the frame rate of the
pipelines and latency of different modules in the pipeline.

Baseline We compare our approach with a baseline architecture
inspired by EdgeEye [25], where all the application logic (modules)
is in one device and the modules may call the services in remote
servers through API calls, which is shown in Fig. 5. While in our
case, our modules are deployed in a way that they are co-located
with the corresponding services available on the devices, as shown
in Fig. 4.

Video
Streaming

Video
Source

Pose
Detection

Activity
Recognition Rep Counter Display

Pose
Detector

Activity
Classifier

Rep
Counter

Display
Service

Phone

Desktop

Figure 5. The architecture of the baseline approach where three
modules make API calls to a remote server.

5.2 Experimental Results
We aim to answer the following questions: (I) What is the perfor-
mance of VideoPipe comparing with the baseline? (II) How the
performance will change if multiple pipelines are sharing the ser-
vices?

5.2.1 Frame Rates of Pipelines
We first depict the latency of different modules in the fitness appli-
cation in Fig. 6. In this figure, we can see that VideoPipe always
has the lowest latency compared with the baseline. Specifically,
VideoPipe has less latency for pose detection, which contributes
most of the improvements.

We also record the end-to-end frame rate shown in Table. 2.
In the second and third column, both VideoPipe and the baseline
are running the fitness pipeline while the FPS in the video source
changed from 5 to 60. As illustrated in Table. 2 co-locating the

Load Frame Pose Activity Detect Rep Count Total Duration
0

20

40

60

80

100

120

Ti
m

e
(m

s)

VideoPipe
Baseline

Figure 6. VideoPipe achieves lower latency for loading frames,
pose detection, activity detection, rep counter and the pipeline.
Among which, the delay for the pose detection is much lower than
the remote API calls in the baseline as we call the pose detection
service on the same machine.

modules with the services clearly improves the frame rate compared
to the baseline approach. Since the pose detector is the bottleneck
of the pipeline, the highest frame rate that we have obtained in the
experiments, is about 11 regardless of higher source frame rates.

Table 2.We show the end-to-end frame rates if we change the frame
rate per second (FPS) in the video source. When comparing with
the baseline, we achieve higher frame rates in different settings.

Source FPS VideoPipe Baseline Two Pipelines

5 4.53 4.52 (4.56, 4.56)
10 8.21 7.79 (7.83, 7.83)
20 11.00 8.25 (9.44, 9.41)
30 10.72 8.33 -
60 11.03 8.01 -

5.2.2 Sharing the Services Across Pipelines
We show the re-usability of services across pipelines by executing
the fitness application and the gesture control application simulta-
neously. These two pipelines share the pose detector service.

The results are shown in the fourth column of Table 2. The first
and second numbers are the frame rates for the fitness pipeline
and the gesture control pipeline. The performance of the fitness
pipeline remains almost the same for frame rates less than 20 and
adding the second pipeline did not significantly affect performance,
which reflects on the flexibility of VideoPipe.

After the frame rate reaches 20, the end-to-end frame rate is
decreasing, which indicates that we may have reached the limit
of the shared pose detector service. It also implies that we should
scale the services at this point, which is convenient in our design
as the services are stateless.

6 Related Work
MediaPipe [26] is a framework for building audio/video processing
pipelines. Similar framework is proposed in DeepStream SDK [7]
where it provides APIs for TensorRT, video coding/decoding and
visualization, which are optimized for Nvidia GPUs. However, both
of the approaches only focus on running the pipeline on one device

Middleware Industry ’19, December 9–13, 2019, Davis, CA, USA M. Salehe et al.

instead of multiple devices. While serverless processing architec-
tures have been proposed for the edge [14, 27], these systems do
not deal with setting up a data pipeline for heterogeneous devices
within a home.

In EdgeEye [25], a real-time video analytics service is proposed
for the edge where applications can send requests to use services
running on high performance servers. In this model, Deep Neural
Networks run on these servers and applications can send frames to
the servers for further processing. This system builds the pipelines
by making service calls in the remote server while our approach
will call the services by the modules on the same device directly.
Similar systems [11, 32, 33] all send data to datacenters where the
user has no control over and privacy concerns for how the data is
managed and kept exists.

Furthermore, studies such as Vigil [33], VideoEdge [19] and
Chameleon [23] focus on aggregating video analytics from a ge-
ographically distributed set of sources to improve the overall ac-
curacy while reducing the computational overhead. However, we
focus on how to do video analytics for a single video source in
a video processing pipeline. Their work are orthogonal to ours.
GStreamer [8] can also be used to build video processing pipelines
as shown in [19]. However, GStreamer is mainly designed for video
editing instead of streaming [26]. Moreover, it did not support video
processing pipelines across multiple devices.

Finally, other pipeline related data processing frameworks are
proposed in [2, 10, 13]. However, all of the systems focus on the
batch data processing instead of real-time video processing in our
paper. Batch processing and real time data processing have very
different design considerations. For instance, in our real time video
processing case, frame rates and lag are more important objectives.
The concept of having a distributed operating system for home
devices has been argued for and proposed by Dixon et al. [15, 16].
They propose HomeOS a multi-layer operating system for the home
where PC-like abstractions for network devices are provided to
users and developers. However, in our architecture, applications are
deployed as a pipeline of modules suited for streaming applications.

7 Concluding Remarks
In this paper, we propose VideoPipe as a framework for efficient
and flexible video processing pipelines in the home. With the de-
sign of modules, we can execute application code on any of the
heterogeneous edge devices as they have the same runtime envi-
ronment even though the hardware specifications may differ. We
have designed and implemented services for heavy machine learn-
ing workloads. Services can be accessed from the modules locally
and shared across multiple modules transparently. To validate the
performance of our approach, we have created two applications
on top of our framework and compared VideoPipe with the state-
of-the-art approaches. Experimental results show that VideoPipe
can substantially improve the performance of the video processing
pipelines. For future work, we aim to include automatic deploy-
ment, scheduling and monitoring components to VideoPipe and
also scale up services automatically based on workload.

References
[1] 2019. Amazon Go: Amazon Cashierless Stores. https://

www.amazon.com/b?ie=UTF8&node=16008589011 Accessed:
2019-09-12.

[2] 2019. Apache Beam: An Advanced Unified Programming
Model. http://zeromq.org/ Accessed: 2019-08-28.

[3] 2019. AWS IoT Greengrass. https://docs.aws.amazon.com/
greengrass/index.html Accessed: 2019-09-12.

[4] 2019. Azure IoT Edge. https://azure.microsoft.com/en-us/
services/iot-edge/ Accessed: 2019-09-12.

[5] 2019. Distributed Messaging - zeromq. http://zeromq.org/
Accessed: 2019-08-09.

[6] 2019. Duktape: An Embeddable JavaScript Engine. https:
//duktape.org/ Accessed: 2019-09-09.

[7] 2019. NVIDIA DeepStream SDK. https://developer.nvidia.
com/deepstream-sdk Accessed: 2019-08-28.

[8] 2019. The GStreamer Library. https://gstreamer.freedesktop.
org/ Accessed: 2019-08-28.

[9] 2019. Tizen: a Linux-based Mobile Operating System. https:
//www.tizen.org/ Accessed: 2019-09-09.

[10] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava
Chernyak, Rafael J Fernández-Moctezuma, Reuven Lax, Sam
McVeety, Daniel Mills, Frances Perry, Eric Schmidt, et al. 2015.
The Dataflow Model: A Practical Approach to Balancing Cor-
rectness, Latency, and Cost in Massive-Scale, Unbounded, Out-
of-Order Data Processing. Proceedings of the VLDB Endowment
8, 12 (2015).

[11] Ganesh Ananthanarayanan, Paramvir Bahl, Peter Bodík, Kr-
ishna Chintalapudi, Matthai Philipose, Lenin Ravindranath,
and Sudipta Sinha. 2017. Real-Time Video Analytics: The
Killer App for Edge Computing. IEEE Computer 50, 10 (2017),
58–67.

[12] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen
Fink, Vatche Ishakian, Nick Mitchell, Vinod Muthusamy, Ro-
dric Rabbah, Aleksander Slominski, et al. 2017. Serverless
Computing: Current Trends and Open Problems. In Research
Advances in Cloud Computing. Springer, 1–20.

[13] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker
Markl, Seif Haridi, and Kostas Tzoumas. 2015. Apache Flink:
Stream and Batch Processing in a Single Engine. Bulletin
of the IEEE Computer Society Technical Committee on Data
Engineering 36, 4 (2015).

[14] Eyal de Lara, Carolina S Gomes, Steve Langridge, S Hossein
Mortazavi, and Meysam Roodi. 2016. Hierarchical Serverless
Computing for the Mobile Edge. In 2016 IEEE/ACM Symposium
on Edge Computing (SEC). IEEE, 109–110.

[15] Colin Dixon, Ratul Mahajan, Sharad Agarwal, AJ Brush, Bong-
shin Lee, Stefan Saroiu, and Paramvir Bahl. 2012. An Oper-
ating System for the Home. In Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation.
USENIX Association, 25–25.

[16] Colin Dixon, Ratul Mahajan, Sharad Agarwal, AJ Brush, Bong-
shin Lee, Stefan Saroiu, and Victor Bahl. 2010. The Home
Needs an Operating System (and an App Store). In Proceedings
of the 9th ACM SIGCOMMWorkshop on Hot Topics in Networks.
ACM, 18.

[17] Geoffrey C Fox, Vatche Ishakian, Vinod Muthusamy, and Alek-
sander Slominski. 2017. Status of Serverless Computing and
Function-as-a-Service (FaaS) in Industry and Research. arXiv
preprint arXiv:1708.08028 (2017).

[18] Anne-Cecilie Haugstvedt and John Krogstie. 2012. Mobile
Augmented Reality for Cultural Heritage: A Technology Ac-
ceptance Study. In 2012 IEEE international symposium onmixed

https://www.amazon.com/b?ie=UTF8&node=16008589011
https://www.amazon.com/b?ie=UTF8&node=16008589011
http://zeromq.org/
https://docs.aws.amazon.com/greengrass/index.html
https://docs.aws.amazon.com/greengrass/index.html
https://azure.microsoft.com/en-us/services/iot-edge/
https://azure.microsoft.com/en-us/services/iot-edge/
http://zeromq.org/
https://duktape.org/
https://duktape.org/
https://developer.nvidia.com/deepstream-sdk
https://developer.nvidia.com/deepstream-sdk
https://gstreamer.freedesktop.org/
https://gstreamer.freedesktop.org/
https://www.tizen.org/
https://www.tizen.org/

VideoPipe Middleware Industry ’19, December 9–13, 2019, Davis, CA, USA

and augmented reality (ISMAR). IEEE, 247–255.
[19] Chien-Chun Hung, Ganesh Ananthanarayanan, Peter Bodik,

Leana Golubchik, Minlan Yu, Paramvir Bahl, andMatthai Phili-
pose. 2018. Videoedge: Processing Camera Streams using Hi-
erarchical Clusters. In 2018 IEEE/ACM Symposium on Edge
Computing (SEC). IEEE, 115–131.

[20] Ahmad Jalal, Shaharyar Kamal, and Daijin Kim. 2014. A Depth
Video Sensor-based Life-Logging Human Activity Recogni-
tion System for Elderly Care in Smart Indoor Environments.
Sensors 14, 7 (2014), 11735–11759.

[21] Ahmad Jalal, Shaharyar Kamal, and Daijin Kim. 2015. Shape
and Motion Features Approach for Activity Tracking and
Recognition from Kinect Video Camera. In 2015 IEEE 29th
International Conference on Advanced Information Networking
and Applications Workshops. IEEE, 445–450.

[22] Pooyan Jamshidi, Claus Pahl, Nabor CMendonça, James Lewis,
and Stefan Tilkov. 2018. Microservices: The Journey so Far
and Challenges Ahead. IEEE Software 35, 3 (2018), 24–35.

[23] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Sid-
dhartha Sen, and Ion Stoica. 2018. Chameleon: Scalable Adapta-
tion of Video Analytics. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication.
ACM, 253–266.

[24] Jay Kreps, Neha Narkhede, Jun Rao, et al. 2011. Kafka: A Dis-
tributed Messaging System for Log Processing. In Proceedings
of the NetDB. 1–7.

[25] Peng Liu, Bozhao Qi, and Suman Banerjee. 2018. Edgeeye:
An Edge Service Framework for Real-time Intelligent Video
Analytics. In Proceedings of the 1st International Workshop on
Edge Systems, Analytics and Networking. ACM, 1–6.

[26] Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris McClana-
han, Esha Uboweja, Michael Hays, Fan Zhang, Chuo-Ling

Chang, Ming Guang Yong, Juhyun Lee, et al. 2019. MediaPipe:
A Framework for Building Perception Pipelines. arXiv preprint
arXiv:1906.08172 (2019).

[27] SeyedHosseinMortazavi, Mohammad Salehe, Carolina Simoes
Gomes, Caleb Phillips, and Eyal de Lara. 2017. Cloudpath: a
Multi-tier Cloud Computing Framework. In Proceedings of the
Second ACM/IEEE Symposium on Edge Computing. ACM, 20.

[28] Sam Newman. 2015. Building Microservices: Designing Fine-
Grained Systems. " O’Reilly Media, Inc.".

[29] Thomas Olsson, Tuula Kärkkäinen, Else Lagerstam, and Leena
Ventä-Olkkonen. 2012. User Evaluation of Mobile Augmented
Reality Scenarios. Journal of Ambient Intelligence and Smart
Environments 4, 1 (2012), 29–47.

[30] Sana Tonekaboni, Mjaye Mazwi, Peter Laussen, Danny Ey-
tan, Robert Greer, Sebastian D Goodfellow, Andrew Goodwin,
Michael Brudno, and Anna Goldenberg. 2018. Prediction of
Cardiac Arrest from Physiological Signals in the Pediatric ICU.
In Machine Learning for Healthcare Conference. 534–550.

[31] Chenyang Zhang and Yingli Tian. 2012. RGB-D Camera-Based
Daily Living Activity Recognition. Journal of computer vision
and image processing 2, 4 (2012), 12.

[32] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik,
Matthai Philipose, Paramvir Bahl, and Michael J Freedman.
2017. Live Video Analytics at Scale with Approximation and
Delay-Tolerance. In Proc. of 14th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 17).
377–392.

[33] Tan Zhang, Aakanksha Chowdhery, Paramvir Victor Bahl,
Kyle Jamieson, and Suman Banerjee. 2015. The Design and
Implementation of a Wireless Video Surveillance System. In
Proceedings of the 21st Annual International Conference on Mo-
bile Computing and Networking. ACM, 426–438.

	Abstract
	1 Introduction
	2 System Design
	2.1 Modules
	2.2 Services
	2.3 Data Flow

	3 Implementation
	3.1 Pipeline Configuration
	3.2 Message Transfer Protocol

	4 Applications
	4.1 Fitness Application
	4.2 Gesture Control for IoT Applications
	4.3 Other Applications

	5 Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Related Work
	7 Concluding Remarks
	References

